
Multimedia Retrieval (INFOMR 2020) Content-Based Shape Retrieval System

Content-Based Shape Retrieval System

Camille Gruter (4075587) & Cas Wognum (6934501)

April 20, 2022

Abstract

In this paper, we describe the design, implementation and evaluation of a content-based, shape retrieval
system. We first describe an end-to-end pipeline to extract features from a dataset of three-dimensional

shapes. We then describe a retrieval system to efficiently query this dataset using the features and by
providing an exemplary shape. The emphasis in this paper is not on optimizing the performance of the

system, but rather on introducing the most important concepts and how to verify and evaluate all of these
different steps. To that end, we experiment with various features, distance functions and evaluation metrics.

We acquire an average precision of ≈ 0.45.

1 Introduction

The Multimedia Retrieval course at Utrecht University
focuses on the design and implementation of state of
the art Content-Based Multimedia Retrieval systems.
As part of this course students are tasked with the
creation of such a system for three-dimensional shapes.
This report documents the process of implementing
the Content-Based Shape Retrieval (CBRS) system
and its relevant implementation details.

Three-dimensional (3D) shapes serve a number of
use cases in modern society: from architecture to
visual effects and from dentistry to product design.
With advancements in technology for both using and
creating 3D shapes, it is to be expected that the usage
will only further grow. The so-called shape-databases
that store all these shapes have to evolve alongside
this trend to ensure that users can still effectively
and efficiently retrieve the shape they are looking for
as the number of shapes in the database increases.
Traditional methods such as searching by keywords
require a lot of manual labor to setup and maintain
and are not always expressive enough.

In contrast to traditional methods, our implementa-
tion is content-based. We investigate the possibility
of describing 3D shapes by a succinct, yet complete
feature vector which allows users to search by example:
by presenting a shape as input, our system will output
similar shapes from the database.

We test our system on the Labeled PSB Dataset [11],
which contains 380 meshes in 19 different classes. All
meshes are uniformly distributed among the classes
with twenty samples per class.

In this paper we provide a detailed explanation of
the techniques we used and the decisions that were
made in implementing the CBRS system. The CBRS

system is implemented as a collection of separate C++
executables (compiled using CMake and make) and
Python scripts. The C++ executables were responsible
for processing the 3D shapes. The Python scripts were
small, auxiliary scripts that were mainly used for data
analysis. The intermediate results of these executables
were saved as files to our local file system. This
modular approach made development more easy and
allowed us to profit from the specialised tools in both
C++ and Python. If we used particular libraries or
frameworks, we documented this in the relevant part
of the report.

In Section 2, we will first explain the viewport we
added to our system to easily inspect our results in
3D. In Section 3, we will describe the various steps
needed for extracting features from a mesh; we will
explain the mesh data structure (Section 3.1), the
mesh resampling (Section 3.2), the mesh normaliza-
tion (Section 3.3) and finally the feature extraction
(Section 3.4). In Section 4 we will describe the design
of our shape database and we will focus on the query-
ing system (Section 4.1) and how to speed up the
querying with a hierarchical approach (Section 4.2).
In Section 5 we will explain and evaluate the achieved
results. In Section 6 we will discuss the system’s limita-
tions and possible improvements. Finally, in Section 7
we will summarize and conclude our findings.

2 3D viewport

In order to be able to visually inspect the input and
output of our system, we started out by building a
minimal 3D viewport application that allows us to nav-
igate a 3D space using our mouse as input. We built
this system using OpenGL and GLUT. OpenGL is a
well-known framework for developing applications that
can process 3D shapes. GLUT is an operation-system
independent platform for creating and managing win-
dows and for capturing and handling user input. Such
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Figure 1: Spherical coordinates (by Andeggs - Own
work, Public Domain)

a window then serves as a context in which OpenGL
can be used. There are more advanced alternatives to
GLUT, but because the emphasis of this assignment
is not on the creation of a sophisticated 3D viewport,
GLUT will be an easier, yet adequate framework to
use.

2.1 Camera

In order to navigate the 3D space, we wrote our
own Camera class. To be compatible with the
gluLookAt() function in GLUT, the camera is de-
fined by an up-vector (which for us is defined as the
unit vector along the y-axis), an eye point (i.e. the po-
sition of the camera) and a reference point (i.e. what
the camera is looking at). We define the eye point
using spherical coordinates. In spherical coordinates,
a point in space is defined by the triple (r, θ, φ), see
Figure 1. We implemented three ways of navigating
the scene.

• To rotate the scene, a user presses the left mouse
button and moves the mouse. After computing
the delta between the last known mouse position
(in screen coordinates) and the current mouse
position, we use the delta of the x-coordinate
to update θ and the delta of the y-coordinate
to update φ. In this way we move the camera
along the surface of the sphere centered at the
reference point and with radius r while keeping
the camera pointed at said reference point. We
have φ ∈ (0, π) and compute θ modulo 2π.

• To scale the scene, a user can scroll the mouse
wheel. When a user does so, the r of the spherical
coordinates is updated to increase (i.e. zoom out)
or decrease (i.e. zoom in).

• To translate the scene, a user presses the right
mouse button and moves the mouse. To make
the movement as natural as possible, we move
the reference point parallel to the view plane. To
do so, we compute the cross product between
the directional vector (i.e. the vector from the
camera to the reference point) and the up vector
to find the right vector. We convert the vector
to unit length to make sure the movement speed
is consistent. We now use the delta of the x-
coordinate to move the reference point along the
right vector and the delta of the y-coordinate to
move the reference point along the up vector.

2.2 Shading

To improve the user experience and the debugging
capabilities, we added various types of shading to our
application. With shading we add lighting and color
to our shape. This makes it easier to understand
complex shapes and it allows us to render relevant
information on top of the shape by using some sort
of color coding. The shading is implemented using
OpenGL. Once you have the right information in your
data structure, rendering a shape is as simple as setting
some global variables and then looping over all faces
and vertices to render them. Both of which can be
achieved with some standard OpenGL function calls
and many introductory tutorials will explain this. We
wrote a Renderer class that implements the logic
on how to render something and whether to render
something. Retrieving the right information from our
shapes is explained in more detail in Section 3.2.

We have implemented two main forms of shading:
Smooth shading and flat shading. Besides that, we
added the option to render debug information on top
of the shape, such as the face normals and the unit
cube around the origin. The complete set of shading
options can be seen in Figure 2.

Finally, we populated the 3D space by drawing the
x-axis, y-axis and z-axis for a sense of direction and
scale. Additionally, in the top left corner there is a
small box that displays some basic information about
the mesh.

3 Feature extraction pipeline

3.1 Mesh parsing

As a next step, we want to make sure we can easily
parse shapes from standardized file formats as this
greatly increases the usability of our system. A stan-
dardized format for defining 3D shapes consists of
vertices (points in 3D space) and faces (a polygon
defined by at least three vertices). This format is
generally known as a mesh.
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Figure 2: A bird model rendered with smooth shading (top left), with flat shading (top center), with face
normals rendered on top (top right), as a point cloud (bottom left), with a wireframe on top of smooth shading
(bottom center), and with colors defining the vertex density (bottom right). The vertex density shading mode
is computed by summing the distance to all vertices a vertex is adjacent too.

3.1.1 The PMP library

Initially, we have tried using the OFF parser that is
available as part of the Princeton Shape Benchmark [1]
and the PLY parser from the RPly library [17]. We
parsed everything in the data structure that the OFF
parser used. After some experimentation, we realized
that it would be too complex and too time consuming
to maintain this solution throughout the entire project.
For various components we needed more advanced
data structures to be able to effectively traverse the
mesh and we needed advanced functionality such as
triangulating a mesh or checking the correctness of
the normal vector of each face. We therefore set out
to find a more complete library and discovered the
Polygon Mesh Processing (PMP) library [21].

This library consists of three modules: core,

algorithms and visualization. We used the data
structure and file parsing functionality of the core

module and we used the various algorithms in the
algorithms module to handle this data structure.
We did not use the visualization module. We did
experiment with it, but found that our own solution
that we had already implemented by this time would
be easier to maintain and extend.

3.1.2 Mesh data structure

The mesh datastructure in the PMP library [21] is
its central component. The data structure has an

Figure 3: Halfedge connectivity (taken from the PMP
tutorial [21])

academic history as it is based on the Surface mesh

datastructure developed by Bielefeld Graphics & Ge-
ometry Group [20], which in turn based its design on
OpenMesh [4] designed at the Visual Computing In-
stitute at RWTH Aachen University. Over the years
it has been carefully designed to be very efficient, yet
flexible.

The mesh data structure consists of three main
concepts: Vertices, half-edges and faces. As said
before, vertices are points in 3D space and faces are
polygons (i.e. surfaces of the mesh) defined by an
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ordered list of at least three such vertices. Half-edges
are pairs of directed connections between vertices with
opposing direction. All vertices, half-edges and faces
also store the incidence relations between them. For
traversing a mesh the half-edge plays an essential role
as can be seen in Figure 3.

Vertices, half-edges and vertices are internally noth-
ing more than a identifier. The values and connectivity
associated with a vertex, half-edge or face are saved
in so-called properties, which are indexed by the afore-
mentioned identifier. Some properties, such as the
location of a vertex, are included in the mesh by de-
fault. For others, the PMP library offers its users to
easily define and populate the property themselves.

In practice, we found that it helped to have a ba-
sic understanding of the data-structure, but that you
generally do not have to worry about it. Most com-
putations we needed were already implemented in the
library and using them was as simple as a function
call. As the PMP library also provides an extensive
documentation and many examples, we had no trouble
using it.

3.2 Mesh preprocessing

Before feature extraction, we preprocess our meshes
such that our meshes contain triangular faces only,
have a similar number of vertices and are as uniformly
sampled as possible. This ensures that these variables,
which do not contain any relevant information about
the shape of a mesh, also do not influence the results
of the feature extraction.

3.2.1 Triangulation

As a first step of our preprocessing pipeline, we trian-
gulate our mesh. This means that we transform the
mesh such that it consists of solely triangular faces.
For various subsequent steps, such as computing the
area of a face, having solely triangles makes our job a
lot easier. We use the triangulation algorithm included
in the PMP library [21]. This algorithm is taken from
a paper by P. Liepa [14] and minimizes the summed
squared area of all triangles. The triangulation algo-
rithm was proposed in 2002 and we suspect there to be
more advanced triangulation algorithms. This one was
rather chosen for convenience sake as it was included
in the PMP library.

Next, we want our meshes to share a similar number
of vertices. We chose 5000 vertices as our target. This
value empirically gave us some good results, but some
more thorough investigation into which value to use
could prove useful. A mesh with a high number of
vertices is slower to process, but gives more accurate
results for the feature extraction (see Section 3.4) and
finding the right balance might increase the perfor-
mance of your CBSR system. Now that we have a

target value for the number of vertices, we need to ei-
ther upsample or downsample to respectively increase
or decrease the total number of vertices in a mesh.

For upsampling, the PMP library includes three
different subdivision algorithms:

• Catmull-Clark as proposed by E. Catmull and J.
Clark in 1978 [6]. This well known algorithm,
that was proposed by one of the the co-founders
of Pixar and his co-author, is based on B-splines
and defines control points based on the original
topology and connects these control points to
create a new topology. This algorithm is the
most general of the three options as it also works
for non-triangular meshes. Unfortunately, this
also means it can produce non-triangular meshes,
which we want to avoid.

• Loop as proposed by C. T. Loop in 1987 [15].
This algorithm, that was proposed as part of a
master thesis, only works on triangular meshes.
It also is based on B-splines, but is developed to
have a more intuitive effect. A single triangle is
split in four triangles.

•
√
3 as proposed by L. Kobbelt in 2000 [12]. This

algorithm also only works on triangular meshes,
just as the Loop algorithm does. It is slower
than the Loop algorithm, but the number of faces
grows less quickly as each triangle results in three
new triangles. This allows for more control. Be-
sides that, the subdivision algorithm results in a
uniform refinement when applying it twice in a
row.

Considering all the above-listed reasons, we decided
to go for the

√
3-algorithm. Subdivision algorithms

are mainly used as design tools to refine a coarse
mesh, which is easier and faster to work with, in a
more smooth mesh with more vertices, which generally
looks better. The main goal is thus to smooth the
mesh. Not all meshes are actually smooth however.
In our dataset [11] we for example have meshes from
classes such as tables and chairs. To ensure that the
sharp edges in these shapes remain sharp, we can
indicate so-called feature edges. PMP offers us the
possibility to detect these automatically in two ways:

• The first is to look for boundary edges. These
are edges that are incident to just a single face.

• The second option is to look for edges with a
certain minimum angle. We chose for an angle of
75 degrees. This value was chosen as a educated
guess based on manually inspecting some shapes
from the classes we expected to be deformed the
most, such as tables or chairs.

For downsampling, the PMP library includes just a
single algorithm. It is based on the work of M. Garland
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Figure 4: The effect of the preprocessing step on the number of vertices and the average face area

and P.S. Heckbert [8] and the work of L. Kobbelt, S.
Campagna and H. P. Seidel [13] and implements a
greedy algorithm based on half-edge collapses. Besides
allowing us to specify the number of vertices we target
for, it also includes several options to add additional
constraints on the aspect ratio of a face, the edge
length, the maximum valence of a vertex, the deviation
of the normal vector and the maximum Hausdorff
distance between an old vertex and the set of new
faces. All of these constraints allows us to make the
mesh more uniformly sampled. As we use a separate
preprocessing step for that after this one, this is not
too important to us, but to make sure that the shape
does not deform too much in the mean time we set
the maximum normal deviation to 135◦

Finally, we resample our shape to be more uniformly
sampled. PMP also includes an algorithm for this,
based on the work of M. Dunyach et al [7] and the
work of M. Botsch and L. Kobbelt [5]. Two algorithms
are provided: An adaptive and a uniform variant. We
chose the uniform variant as our goal is to sample our
mesh as uniformly as possible. For this variant, we have
to specify a target length for our edges. We simply
chose the average length of all edges as the target.
This did not work for all meshes as some meshes would
have degenerate properties after the earlier upsampling
or downsampling steps. We therefore made this step
optional.

The effect of the preprocessing step is visualized in
Figure 4. We can clearly see that the distribution of
both the number of vertices and the average face area
is more narrow, meaning that both are more uniform.

3.3 Mesh normalization

To make sure our features describe similarity invari-
ant of translation, rotation, orientation and scale, we
normalize our meshes. The normalization is done in 4
steps (see Figure 5):

1. Translate the mesh such that the barycenter is
at the origin of the coordinate frame.

2. Rotate the mesh such that the principal axes
align with the coordinate frame.

3. Perform the moment test and flip the mesh
based on its outcome if needed.

4. Scale the mesh such that it tightly fits in a unit
cube.

3.3.1 Translating the barycenter

The first step of mesh normalization is translating the
barycenter of the mesh to the origin of the coordinate
frame. The barycenter is the center of mass of the
mesh. We first compute the barycentric coordinates
of the mesh, which is the center point of each face
multiplied by the area of that face. The barycenter is
then the sum of all barycentric coordinates divided by
the total surface area of the mesh. This gives us the
following equation:

x =

∑
f∈faces

pfAf

Asurface
(1)

where x is the barycenter, pf is the center of face f ,
Af is the area of face f and Asurface is the surface area
of the whole mesh. Asurface can be rewritten to

Asurface =
∑

f∈faces

Af (2)

The center of the face can be computed by simply
averaging the locations of all vertices that make up
the face:

pf =
1

n

∑
v∈f

v (3)

where n is the number of vertices of face f . The only
thing that rests us is to compute the area of a face.
The area of a triangular face can be computed using
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Figure 5: The various normalization steps. From left to right: Original, after translating such that the
barycenter is at the origin, after pose normalization, after flipping based on the momentum test, after scaling
to fit in the unit cube. The edges of the unit cube are rendered for convenience.

the magnitude of the cross product of two vectors
along the face using:

A =
1

2
|⇀v ×⇀

w| (4)

where
⇀
v and

⇀
w are the vectors along the edges of a

face and × is the cross product operation. As we have
triangulated our mesh (see Section 3.2.1), we can use
this formula for all our faces.

In order to translate the mesh such that barycenter
is at the origin of the coordinate frame, we simply
subtract the barycenter from all vertices. The effect
of this normalization step is visualized in Figure 6.

3.3.2 Align the principal axes with the coordi-
nate frame

The principal axes are found with the use of Principal
Component Analysis (PCA). With PCA we reduce the
dimensionality of a dataset while maximizing the vari-
ance of the simplified dataset in the process. This is
done by computing the eigenvectors and the eigenval-
ues of the covariance matrix of the vertex positions.
The first step is thus to compute the covariance matrix.
Since we are working in three dimensional space, this
matrix becomes a R3×3 matrix and is calculated as
follows:

C =

σ(x, x) σ(x, y) σ(x, z)
σ(y, x) σ(y, y) σ(y, z)
σ(z, x) σ(z, y) σ(z, z)

 (5)

where σ is the standard deviation, which for any two
axes x, y is computed with the following equation:

σ(x, y) =
1

n− 1

n∑
i=1

(xi − x)(yi − y) (6)

where n is the number of vertices, x represents the
average value of the locations among the x-axis and y
the average value of the locations among the y-axis.

We find the eigenvalues and eigenvectors of the
covariance matrix using the EigenSolver from the Eigen
library [10]. Finally, we rotate the mesh such that

the eigenvector ~ev1 with the largest eigenvalue aligns
with the x-axis, the eigenvector ~ev2 with the second-
largest eigenvalue aligns with the z-axis and the vector
~ev3 = ~ev1 × ~ev2 with the y-axis. To rotate, we simply

project the points to the different eigenvectors using
the vector dot product. For a vertex v, the new position
becomes:

vnew =

vxvy
vz

 =

v · ~ev1v · ~ev3
v · ~ev2

 (7)

Where · is the dot-production operation. The effect
of this normalization step is visualized in Figure 7.
You can clearly see that the distributions evolve such
that the variance among the x-axis is the largest, the
variance among the z axis is the second largest and
the variance among the y-axis is the smallest.

3.3.3 Flip based on the moment test

The goal of the moment test is to flip the shape such
that the majority of the mass is always on one side
of an axis. In this case, we approximate the mass
by computing the summed, squared distance of all
vertices to the axis. Mass on one side of the axis,
contributes negatively to the sum. Mass on the other
side contributes positively. This way, we can tell on
which side the mass is more by simply looking at the
sign of the sum. If we do this for each axis, we get for
a vertex v:

vnew =

vxvy
vz

 =

vxsign(fx)
vysign(fy)
vzsign(fz)

 (8)

where

fi =
∑

f∈mesh

sign(pf )(pf )
2 for i ∈ {x, y, z} (9)

where pf is the center point of face f . The results of
this normalization step are given in Table 1.

3.3.4 Scale to unit cube

The last step of the normalization process involves
scaling the mesh to tightly fit in a unit-sized cube.
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Figure 6: The barycenter of the mesh before and after the normalization step

Figure 7: The variance among the different axes of the mesh before and after the normalization step

This is done by computing the axis aligned bounding
box of the mesh and finding the longest edge of this
cube. We then divide the position of each vertex by
the length of this longest edge. This gives us the
following equation:

v =
v

max
i∈{x,y,z}

( max
v∈mesh

(vi)− min
v∈mesh

(vi))
(10)

The effect of this step is visualized in Figure 8.

3.4 Feature extraction

This section describes the features we extract from the
meshes. The features are content-based descriptors
that will be used to later query the system. Five of
the features are elementary descriptors, also called
simple, global descriptors. These consist of just a
single value. The other five features are shape property
descriptors, which are distributions.The full feature
vector is visualized in Section 9

We represent our distributions as histograms. After
some initial experimentation, we decided to use a hun-
dred bins per histogram. We came to the conclusion

Figure 8: The effect on the the bounding box of a
mesh of the normalization
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Before After
i x y z x y z

Number of meshes with fi ≥ 0 185 192 181 380 380 380
Number of meshes with fi < 0 195 188 199 0 0 0

Table 1: The results of the momentum test

Figure 9: The complete feature vector of length 505

that a histogram with a hundred bins is of a high
enough resolution to differentiate between the various
classes, while it remains computationally feasible to
compute enough samples to actually profit from this
increased resolution. The range of these bins is based
on the theoretical minimum and maximum of a fea-
ture value and is decided per feature. These will be
explained in each of the relevant sections.

These distribution features operate on combinations
of vertices. The total number of possible combina-
tions can take on extremely large values. One of the
features even has a complexity of O(n4) with respect
to the number of vertices n. It is not practical (and
arguably also not necessary) to compute values for
all these combinations. We decided upon a computa-
tional budget of one million combinations. We then
repeatedly and randomly generate a combination of
vertices until we have no more budget left or until we
have processed all possible combinations.

To test our implementation, we picked four shapes
from the Labeled PSB dataset [11]. We picked two
airplanes, a bird and a hand. These four shapes can be
seen in Figure 10. When it comes to their features, we
expect the two airplanes to be very similar, we expect
the airplanes and the bird to have some similarities
but to be distinguishable and we expect the hand to
clearly differ from the other meshes.

3.4.1 Normalization of the features

To make sure that each feature is equally expressive,
we normalize them. The elementary features have
different ranges and are normalized to have the same
range. The distribution features already have the same
range and are normalized such that the values of all
bins are between 0 and 1 and sum up to one. There
are two common methods for normalization. The first
method is called the extent normalisation and uses the

following equation:

fi =
fi − fmin

i

fmax
i − fmin

i

(11)

where fi is the normalized feature value, fi is the
current feature value, fmin

i is the minimum value of
the feature across all shapes in the dataset, and fmax

i

is the maximum feature value across all shapes in the
dataset. The second method called standardization
uses the following equation:

fi =
fi − f avgi

f stdi

(12)

where fi is the normalized feature value, fi is the
current feature, f avgi is the average value of the feature
of all the shapes, and f stdi is the standard deviation
of the feature of all the shapes. We have chosen for
the standardization method as it is less sensitive to
outliers and therefore more robust.

The histograms only had to be normalized per his-
togram, which is done as follows:

hi =
hi∑
hi

(13)

where hi is the updated value in bin i, hi is the current
value in the bin, and

∑
hi is the sum of the values

in all the bins. This ensure that each bin has a value
∈ [0, 1] and that the sum of all these values is exactly 1.

3.4.2 Surface area

The surface area of the mesh is the summed area of
its faces. We compute the surface area using Equa-
tion 2, where the area of each face is computed with
Equation 4.

3.4.3 Compactness (with respect to a sphere)

The compactness of a mesh defines how compact a
mesh is with respect to a sphere. This is calculated
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Figure 10: The four models used to verify the features implementation.

with the following formula

C =
A3

surface

36πV 2
(14)

where Asurface is the surface area, and V is the volume
inside the surface.

3.4.4 Axis-aligned bounding-box volume

An axis-aligned bounding-box is a box around the mesh,
where the sides of the box are parallel to the world
axes. The axis-aligned bounding-box can easily be
found by finding the minimum and maximum values of
each of the three dimensions. When this box is found,
the volume is computed with the following formula:

Vaabb = (length)(width)(height) (15)

where the length, width, and height are calculated
with the following formulas, each representing one
dimension of the axis-aligned bounding-box:

length = xmax − xmin (16)

width = zmax − zmin (17)

height = ymax − ymin (18)

3.4.5 Diameter

The diameter of a mesh is the largest distance between
any two vertices of the mesh. To compute this feature,
we generate all possible pairs (v, u) where v and u
are two vertices of the mesh and then compute the
distance between v and u using the Euclidean distance:

D =

√ ∑
i∈{x,y,z}

(vi − ui)2 (19)

3.4.6 Eccentricity

The eccentricity feature describes the elongation of a
mesh. In mathematical terms, the eccentricity is the
ratio between the largest and the smallest eigenvalue:

E =
λ1
λ3

(20)

These eigenvalues have been calculated before for the
normalization step. For the details on these computa-
tions please look at Section 3.3.2.

3.4.7 A3: Angle between 3 vertices

This feature computes the distribution of the angles
between three random vertices in the mesh. To com-
pute the angle between three random vertices, we
first create two vectors along the edges of the triangle
formed by the three vertices. These will be named ~v
and ~u. The angle is then computed using the following
formula:

α = atan2

(
~v × ~u
|~v × ~u|

, ~v · ~u
)

(21)

The computed angle α is in radians and because we
calculate the angle in a triangle, we know α ∈ [0, π]
and pick this as the range for our distribution.

3.4.8 D1: Distance between origin and vertex

With this feature we compute the distribution of the
distance between the barycenter and a random vertex v
of the mesh. Because of the translation step in the
mesh normalization, we know that the barycenter of
all meshes is exactly at the origin of the world. Finding
the distance between the barycenter and the origin can
be done using Equation 19 with u = (0, 0, 0). The
formula for this feature becomes:

D =
√
v2x + v2y + v2z (22)

Theoretically, given that we have normalized our
mesh to fit in a unit cube, the theoretical maximum
value that occurs in the distribution of this feature
would be

√
(3) ≈ 1.73. In practice however, we no-

ticed that the maximum distance was a lot lower and
did not exceed 1. To have a more detailed distribution,
we therefore chose to set the range for this distribution
to [0, 1]. To be safe, we assign all values outside of
this range to the largest bin, which thus also functions
as a sort of rest bin. This way our application will not
crash if a shape is presented from outside our database
that exceed our practically chosen maximum.

3.4.9 D2: Distance between 2 vertices

This feature is similar to the D1 feature. This feature
is also computed using Equation 19, where v and u
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Figure 11: Example of a largest possible triangle in a
unit cube

are now two randomly selected vertices of the mesh.
Theoretically, a mesh can extend to two corners of
the unit bounding box, and therefore the largest theo-
retical distance for this feature is the diagonal of the
unit bounding box centered around the origin. The
diagonal has length

√
3 and therefore the range of this

distribution was set to [0,
√
3].

3.4.10 D3: Square root of triangle area

This features computes the distribution over the square
root of the area of a triangle formed by three random
vertices in the mesh. The area of the triangle formed in
this feature can be calculated in the same way as how
we calculate the area of a face by using Equation 4.

The largest triangle that can possible occur in a unit
cube has its three edges aligned with three diagonals
of three of the faces of the cube, as can be seen in
Figure 11. This triangle has as an area of

√
3/2. We

therefore set the range of this distribution to:0,
√√

3

2


3.4.11 D4: Cube root of tetrahedon volume

With this feature we compute the distribution over the
cube root of the volume of the tetrahedron formed by
four random vertices in the mesh. The following for-
mula is used for calculating the volume of the resulting
tetrahedron:

V =
1

6
× (

⇀
u · (⇀v ×⇀

w)) (23)

where the vectors ~u, ~v and ~w are vectors from one
vertex to the three other vertices. To go from the
volume to the feature, we simply take 3

√
V . The

largest tetrahedron in a unit cube is formed with the 6
diagonals of each of the 6 faces. These diagonals have
length

√
2. The formula for calculating the volume of

a tetrahedron with equal length edges is:

a3

6
√
2

(24)

where a is the length of the edges. For the largest
tetrahedron in a unit cube, the volume becomes 1/3.
The range of the distribution for this feature will thus
be: [

0,
3

√
1

3

]

3.4.12 Verification of the features

As mentioned in the introduction, we have chosen four
meshes to verify our features implementation. If every-
thing has been implemented correctly, we would expect
the difference between the airplanes to be minimal, the
difference between the hand and the airplanes maximal
and the difference between the bird and the airplane to
be somewhere inbetween those extremes. In Table 2
we give the values of the elementary features of these
four meshes. And in Figures 12, 13, 14, 15, and 16 we
give the distributions of the distribution features. It
can be seen that the features for the airplane models
are very similar, while the features of the other two
models are further apart from the airplanes. We would
have expected the features of the bird to be more sim-
ilar to the features of the airplane than to the features
of the hand. Looking at Figure 10 again however, this
intuitive expectation might originate from a functional
perspective (i.e. both airplanes and birds fly) rather
than from a content perspective. If we solely look
at the shapes, we could argue that the hand is actu-
ally more similar, which might explain the observed
discrepancy. This intuition is confirmed by Figure 17
which will be described in more detail in Section 5.1.

We have also done a more extensive evaluation by
visualizing all computed feature values per class. This
allows for an easy visual inspection of the differences
within and between classes. Ideally, the difference be-
tween classes is maximized while the difference within
classes is minimized. All these plots are given in Ap-
pendix A.

All of these evaluations serve as a check to test
whether the implementation is correct. The actual
suitability of these specific features for content-based
retrieval will be discussed in detail in Section 5.

4 Database design

This section describes how we use the features de-
scribed in the Section 3.4 to build a content-based
retrieval system. The CBRS asks the user to provide
a shape to query by. The system will then compute
the feature vector for this new shape and will find the
most similar shapes.
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Mesh Surface area Compactness AABB volume Diameter Eccentricity
Airplane (62.off) -0.758012 0.144895 -0.674201 -0.765835 0.166876
Airplane (63.off) -0.75842 0.403634 -0.674517 -0.774943 0.132898

Bird (252.off) -0.523901 -0.371315 -0.09724 -0.774715 -0.426044
Hand (184.off) -0.144053 -0.200721 -0.551645 -0.680776 -0.252004

Table 2: The results of the four meshes to verify the features implementation

Figure 12: The histograms of feature A3

Figure 13: The histograms of feature D1

Figure 14: The histograms of feature D2

Figure 15: The histograms of feature D3

Figure 16: The histograms of feature D4
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4.1 Distance functions

At the core of our database are the feature vectors
for all of the shapes in our database. Each feature
vector consists of 505 values (see Figure 9). One value
per elementary feature and one value for each of the
one hundred bins of each of the distribution features.
To compare these feature vectors, we use a distance
function. We have implemented a total of three such
distance functions. The three distance functions are
the Euclidean distance, the Cosine distance and the
Earth Mover’s distance (EMD). The EMD only works
for distributions. We therefore combine EMD with
either the Cosine or Euclidean distance to be able to
compare the whole feature vector. This gives us four
similarity metrics in total.

4.1.1 Euclidean distance

The first distance function is the Euclidean distance.
If we consider the vectors as (high dimensional) points,
the Euclidean distance between two points is the length
of the vector that starts at the first point and ends at
the second. We have given the Euclidean distance al-
ready for 3D vectors in Section 3.4.5 with Equation 19.
More generally, for two vectors x and y of length n ≥ 1
we get:

d(x, y) =

√√√√ n∑
i

(xi − yi)2 (25)

4.1.2 Cosine distance

The Cosine distance defines the angle between two
vectors to be the distance between them.

d(x, y) = 1− cos(θ) = 1− x · y
|x||y|

(26)

4.1.3 Earth Mover’s distance

The Earth Mover’s Distance (EMD) [18] intuitively
describes the minimum amount of work required to
change one distribution into another and can be formu-
lated as an application of the transportation problem
and is solved by solving a linear optimization problem.
We used the C implementation provided by one of the
original authors of the EMD paper: Yossi Rubner [19].
The formula for the Earth Mover’s Distance is the
following:

EMD(x, y) =

∑
i∈I
∑

j∈J cijfij∑
j∈J yj

(27)

where cij is the distance between elements i and j
from their respective signatures (histograms), fij is
the flow and the denominator makes sure no more
’earth’ is moved than that there is available. The
distance used for variable cij is the euclidean distance
with the bin numbers (ranging from 1 to 100, since
we have 100 bins) and the bin values.

4.1.4 Verification of the distance functions

To verify the implementation of the distance functions
and to compare their performance, we have chosen
three meshes to query for the five most similar meshes
to the chosen query mesh. The results are given in
Appendix B. The three meshes are a human mesh
(see Table 5), a teddy bear mesh (see Table 6), and
a cup mesh (see Table 7). These tables also list the
distance of the queried mesh has to the given mesh.
From these tables, it can be easily concluded that the
combination of the Cosine distance and the EMD is
the best combination as this distance function gives
the best top-k results given our features.

An additional way of verifying and comparing the
distance function, is by plotting the distance matrices
of the various distance functions. These results are
given in Table 3. The distance matrices are symmetric
about the diagonal. Ideally, we would want the cells
on the diagonal to be have a low distance (i.e. a
dark color) and all other cells to have a clearly higher
distance (i.e. a brighter color). We can again clearly
see that the cosine distance achieves this more than
the euclidean distance. The effect of EMD is less
notable in these matrices, but that can most likely be
explained due the aggregation of the results.

4.2 Scalability

To speed up the query time, we can make use of
a nearest neighbor algorithm in combination with a
spatial data structure to more efficiently search our
database. We use approximate nearest neighbors in
combination with a K-Dimensional Tree (KD-Tree) as
implemented by Mount and Arya [3].

A KD-Tree can be thought of as a binary search
three that partitions a high dimensional space and
makes it possible to quickly search for points in this
high dimensional space. These high-dimensional points
correspond to our 505 dimensional feature vectors. Ini-
tializing the KD-tree data structure has O(n log n)
complexity and requires O(nk) space with k = 505
and n = 380 in this particular case. This is a worse
than computing the distances between the query mesh
and all other meshes with O(n) complexity and O(n)
space. After having initialized the data-structure how-
ever, we can perform a nearest neighbor query with
O(log n) complexity, which is a lot faster than the
O(n) complexity of simply testing all pairs of meshes.

The implementation of Mount and Arya allows us
to use all Minkowski distances defined by:

D(X,Y ) =

(
n∑

i=0

|xi − yi|d
) 1

d

(28)

We use the Euclidean distance function (with d = 2)
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Euclidean Distance Cosine Distance
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Table 3: The distance matrices of the four distance functions aggregated per class pair by taking the mean
distance. The matrix is symmetric about the diagonal and ideally we would want to see the diagonal in a very
dark color and all other cells to be more bright.

Figure 17: The 2D and 3D embedding of our 505 dimensional features
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Figure 18: A preview of the viewport. The GUI shows
the query methodology details and displays information
about the query mesh and the mesh currently displayed
that is a result of the query (called Query Match).

4.3 Interaction

We allow our users to interact with the system at
run-time to easily test the effect of various parameters,
such as the maximum query size K and the maximum
distance radius R. A preview of the interface is given
in Figure 18. The full list of available controls is given
in Figure 19.

5 Evaluation

In this section, we will evaluate the performance of
our system. We will do this using both a t-SNE visu-
alization which we can more intuitively interpret and
a performance metric.

5.1 Barnes Hut t-SNE

We used the Barnes Hut approximation [22] of the
t-Distributed Stochastic Neighbor Embedding (i.e.
t-SNE [16]) to visually evaluate the suitability of our
features. t-SNE is an algorithm that visualizes a high-
dimensional dataset in a low-dimension by reducing the
dimension while ensuring that distances in the lower
dimension still represent similarity. We visualized the
2D embedding and 3D embedding of our dataset in
Figure 17. We would have expected the 3D embedding
to give more insights as there is more space to better
represent the structure of the high dimensional vector
space, but this practically turned out to be insignifi-
cant. Ideally, we would like to see a clearly separate
cluster for each of our classes. Some of the classes
have a clear cluster that is separated from the other
data points (such as the plier and the airplane class),
but other classes are very spread out and have lots
of overlap with other features (such as the bird and
octopus class).

5.2 Precision

We evaluate our system using the precision metric.
There are several metrics that can be used to evaluate
a classification system, such as the accuracy, precision,
recall and cross-entropy. Which metric is most applica-
ble, depends on the use case. Inspired by the Google
search engine, we argue that it is most important for
our system to acquire high precision for its first results,
analogous to how it is important for Google to display
the most relevant items on the first page. Humans do
generally not look passed these initial results.

Our system uses the Labeled PSB database [11],
which contains 380 meshes that are separated in 19
classes. Each class consists of exactly 20 meshes.
To simulate the ”first page” principle of Google, we
perform a query to return the top-10 (K = 10, R =∞)
results. Given the number of matches X where the
class label of the match equals the class label of the
query mesh, we can compute the precision simply by:

Precision =
X

10
(29)

The aggregated results per class, distance function
pair are visualized in Figure 20 and the aggregated
results per class are given in Table 4.

Class Label Precision
airplane 0.77375
ant 0.43750
armadillo 0.27375
bearing 0.30250
bird 0.20000
bust 0.41500
chair 0.54250
cup 0.66375
fish 0.52125
four leg 0.28250
glasses 0.49250
hand 0.31625
human 0.37750
mech 0.58500
octopus 0.25375
plier 0.87875
table 0.43875
teddy 0.44250
vase 0.28500

Table 4: The mean precision aggregated by class

As expected, we observe that the values in Figure 20
correspond with what we would expect based on the
plot given in Section 5.1. The average, overall precision
equals ≈ 0.45. Meaning that on average for every 10
meshes a user queries, 4.5 of them are actually correct.
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Figure 19: The keys and buttons available to our users to interact with the system

Figure 20: The mean precision aggregated per class, distance function pair
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6 Discussion

In this section we will discuss of the overall performance
of the designed system.

6.1 Suitability of the features

The biggest limitation is the suitability of the features.
No features are perfect and a combination of features
is needed to achieve good results. By looking at
Figure 17, we get an easy, visual overview of our high
dimensional vectors. Ideally, we would want to see
clearly distinct clusters for each of the classes. Using
this embedding, we observe that the features seem to
work well for separating some of the classes from the
others, but fail to do so for all classes. This observation
is further confirmed by Figure 20. As expected, we
see a clear correlation between the visual embedding
and the precision metric.

While there undeniably are a lot of hand-crafted
features left that could be experimented with, such
as shape contour features (e.g. the skeleton of a
shape [2]), an interesting approach is to (also) try
learn the features. Deep learning [9] is a form of
representation learning that is loosely modelled after
the neurons in the human brain. In comparison to
traditional algorithms, where we implement a set of
transformations to get from an input to an output, in
deep learning we feed a dataset of such input-output
pairs to a model that learns this set of transformations
by itself. This is often accomplished using (a variation
of) an algorithm called Stochastic Gradient Descent.
We could use deep learning models, often referred
to as Neural Networks, to automatically classify each
mesh directly. An even more interesting approach, is
to rather learn to construct a good feature vector.

A type of neural network called the Auto Encoder
generally consists of two modules: An encoder that
transforms raw data in an intermediate feature vector
and a decoder that takes in the intermediate represen-
tation and tries to reconstruct the original raw data
from it. By imposing a bottleneck on the complex-
ity of the intermediate layer, the network learns to
efficiently compress the raw data in a feature vector.
After we have fit a good model to our dataset, we can
use the encoder to compute a hopefully distinguishing,
distributed and disentangled representation.

The keyword there is hopefully. As Neural Networks
can be hard to control and understand, the complexity
of developing a Neural Network that actually learns
something useful is difficult. Besides that, they also
need a lot of data to be trained which might not
be available. Those consideration are important in
deciding for an automated deep learning approach or
for handcrafted features.

6.2 Impact of the distance function

Comparing Table 3 and Figure 20, we observe that the
impact of the distance functions is less significant then
the impact of the features themselves. In Table 3, we
see that the general pattern in the different matrices
is fairly similar, but that the cosine distance is slightly
better. We do not observe a notable difference for
using the EMD or not. This is most likely because
we aggregate the data. If we look at Figure 20 and
Appendix B we do observe a difference between the
distances with and without EMD. Generally speaking,
we can say that the combination of the Cosine dis-
tance for the elementary features and the EMD for the
distributional features is the best combination.

6.2.1 Weighting the distance function

An interesting extension for improving the distance
function, is to use a weighted distance function. Using
weights wi ∈ [0, 1] such that

∑n
i=0 wi = 1 allows us

to assign more or less importance to some parts of
the feature vector (feature weighting) or to one of
the multiple distance functions (e.g. Cosine distance
and EMD) we use in comparing the vector (distance
weighting). These weights could be set experimentally,
but an alternative approach could be to use a (simple)
Machine Learning model to learn these weights such
as logistic regression or a genetic algorithm.

6.3 Better ground truth similarity

The current similarity of our ground truth is boolean in
the sense that two classes are either similar or dissimilar
and that there is nothing in between. Using a range
of similarity scores (or in other words: a ranking) to
evaluate the system might be more representative of
real-life similarity. For example: If a user queries with
a plane mesh and gets back a bird mesh, this will most
likely be considered better performance than when the
user gets back a human mesh.

7 Conclusion

In this paper, we documented the design, implementa-
tion and evaluation of a content based, shape retrieval
system. By resampling and normalizing the meshes,
we are able to compare meshes invariant of location,
rotation, orientation, scale and vertex distribution. We
used a total of ten features; five elementary and five
distributional features. We evaluated the suitability
of these features both visually (with a t-SNE embed-
ding) and numerically (with the precision score) and
experimented with four different distance functions to
compare these feature vectors. We achieve an aver-
age precision of ≈ 0.45 and conclude that the biggest
gain in performance can be achieved by using better
features.
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Barthe, and Mario Botsch. Adaptive remeshing
for real-time mesh deformation. 2013.

[8] Michael Garland and Paul S. Heckbert. Surface
simplification using quadric error metrics. In Pro-
ceedings of the 24th Annual Conference on Com-
puter Graphics and Interactive Techniques, SIG-
GRAPH ’97, page 209–216, USA, 1997. ACM
Press/Addison-Wesley Publishing Co.

[9] Ian Goodfellow, Yoshua Bengio, Aaron Courville,
and Yoshua Bengio. Deep learning, volume 1.
MIT press Cambridge, 2016.
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A Feature evaluation

To qualitatively check the implementation correctness of our feature extraction component, we plotted the
different feature values, grouped by class. Ideally, feature values would be the same within a class and different
between classes. These plots allow us to visually inspect that before we continue on to the more thorough
evaluation of the suitability of these specific features to describe our dataset.
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B Distance functions evaluation

To check the implementation correctness of our distance functions, we selected three meshes to query matches
for. For each of the distance functions, we find the 5 nearest neighbors. The three meshes are a human mesh,
a teddy bear mesh, and a cup mesh.

When we look at the human query table 5, it can be seen that only the combination of the cosine distance
with EMD returns all human shapes. The other three distances also return two bearing meshes. However, the
cosine distance returns them one mesh later than the euclidean distances. Table 6 shows the results of the
teddy bear mesh. It is noticed that all four distance functions return an armadillo shape as third closest match.
However, only the cosine and EMD combination returns a teddy bear as fifth closest match. The other three
distance functions return either a bust shape (euclidean distances) or a wine glass. Lastly, Table 7 shows the
results of the cup mesh. In this case only cups are returned by all the distance functions.

1 2 3 4 5

Euclidean distance

0, 260696 0, 367667 0, 37476 0, 384559 0, 415232

Cosine distance

0, 006995 0, 009045 0, 014160 0, 014952 0, 018314

Euclidean + Earth Mover’s Distance

0, 261481 0, 356551 0, 362924 0, 384538 0, 418621

Cosine + Earth Mover’s Distance

0, 087434 0, 096357 0, 100143 0, 124992 0, 126580

Table 5: Table with the five closest matches to the human mesh in the top left corner according to different
distance functions
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1 2 3 4 5

Euclidean distance

0, 143521 0, 340796 0, 439921 0, 487499 0, 549784

Cosine distance

0, 006232 0, 044954 0, 057211 0, 099238 0, 101739

Euclidean + Earth Mover’s Distance

0, 150233 0, 342502 0, 442567 0, 488929 0, 551372

Cosine + Earth Mover’s Distance

0, 064535 0, 129825 0, 160145 0, 194617 0, 195971

Table 6: Table with the five closest matches to the teddy mesh in the top left corner according to different
distance functions

1 2 3 4 5

Euclidean distance

0, 043369 0, 517267 0, 769255 0, 881135 0, 888335

Cosine distance

0, 000118 0, 007452 0, 015848 0, 019772 0, 021187

Euclidean + Earth Mover’s Distance

0, 054482 0, 515217 0, 769885 0, 877495 0, 888687

Cosine + Earth Mover’s Distance

0, 039661 0, 084423 0, 086241 0, 090713 0, 100008

Table 7: Table with the five closest matches to the cup mesh in the top left corner according to different
distance functions
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